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a b s t r a c t

The rapid development of 31P magnetic resonance spectroscopy (MRS) has enhanced non-invasive mea-
surement of brain metabolites, which is important for biomedical research. The accuracy and efficiency of
data post processing and quantification is paramount for MRS applications. One of the difficulties with
in vivo 31P MRS data quantification is the separation of broad line-width resonances from chemical com-
pounds’ resonances under a low signal-to-noise ratio condition. Furthermore, the chemical shift of some
compounds caused by pH and Mg2+ concentration can be troublesome. This work aims to develop an
automatic algorithm using a state-space based quantification approach to solve the above mentioned
problems. To achieve this aim, we utilized an HSVD based adaptive optimizing prior knowledge algo-
rithm, which uses so called ‘‘interference” signals to optimize prior knowledge iteratively for parameter
optimization. We termed this algorithm IRIS-HSVD, which stands for Iterative Reduction of Interference
Signal HSVD. The Monte Carlo evaluations of the algorithm were conducted with simulated data using
in vivo parameters commonly obtained from a 4 T scanner. The performance of this algorithm using sim-
ulated data was compared to those of other automatic methods including HSVD and HTLS-PK. Examples
of in vivo 31P data obtained from brains of healthy subjects on a 4T MRI scanner were also presented,
which demonstrated the superiority of the new method. The results were compared with those using
AMARES.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Magnetic resonance spectroscopy (MRS) has become increas-
ingly important in biomedical research because of its ability to
measure in vivo biochemical information. Multi-voxel 31P MRS is
a useful tool for the study of in vivo energy metabolites in humans
and animals [1,2]. However, spectral analysis can be tedious and
time consuming, particularly for multi-voxel data acquired using
2D or 3D MRS. Additionally, it suffers from a low signal-to-noise
ratio (SNR), spectral overlapping, chemical frequency variation
influenced by a biophysiological environment, and significant
baseline artifacts. These issues can be attributed to (1) a low natu-
ral concentration of 31P biochemical compounds in in vivo samples,
(2) the variation of certain 31P resonances by the influence of phys-
iological environment, (3) the origination of some signals from
immobile compounds (presumably from bone marrow and/or cell
membranes), and/or (4) imperfect hardware. These complications
continue to challenge the development of an automatic algorithm
for MRS data quantification, which is strongly needed to further
advance this methodology to widespread clinical applications.
ll rights reserved.
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The algorithms developed for MRS data analysis based on the
state-space approach are rapidly increasing due to significant
improvements in quantitation robustness and accuracy [3]. The
state-space methods often employ tools such as the Singular Value
Decomposition (SVD) [4] or the orthogonal matrix triangulariza-
tion (also known as QR decomposition) [5,6] to distinguish the sig-
nal and noise subspaces. Compared to the frequency domain
methods [7], the state-space approach has less sensitivity to phase
errors and greater tolerance of spectral overlap, baseline distor-
tions and/or missing data samples [8,9].

The SVD, as well as its derivative methods such as Hankel SVD
(HSVD) [10,11], Hankel Lanczos SVD (HLSVD) [12] and Linear Pre-
diction SVD (LPSVD) [13,14], provide nearly automatic quantifica-
tion approaches, although their results are often prone to lack of
physical and/or physiological meaning (i.e., specificity and accu-
racy). It was demonstrated that the accuracy of these approaches
can be improved by introducing Hankel Total Least Squares (HTLS)
techniques [15]. Furthermore, incorporating prior knowledge with
subspace methods (or, in general, any methods) could further im-
prove performance robustness. For example, simulated spectra by
spin physics were utilized to obtain a theoretical estimation of
the frequencies and damping factors of targeted resonances in
QUEST (quantitation based on quantum estimation), which can
also handle baseline distortions [16]. Prior knowledge of signal
frequencies and damping factors can also serve as the starting
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estimation values in AMARES (advanced method for accurate, ro-
bust, and efficient spectral fitting) [19]. In addition, constrained
signal frequencies and damping factors were used in methods such
as the frequency domain SVD [20], Extended Relaxation Based Esti-
mator (E-RELAX) [21], and Metropolis Frequency-Selective
(MeFres) [22]. The chemical shift relationship of certain chemical
species was also used to improve algorithm accuracy and robust-
ness in the Knowledge Based SVD (KNOB-SVD) [23] and the Knowl-
edge Based Total Least Square (KNOB-TLS) methods [24]. Both
algorithms estimated the relative chemical frequency using a fixed
chemical shift between a- and c-ATP and demonstrated an
improvement in performance compared to the AMARES, HTLS,
and HTLS-PK algorithms.

To date, few studies have focused on in vivo 31P MRS conditions,
in which chemical frequency changes could be caused by biophys-
iological and/or physical variations (e.g., pH value and Mg2+ con-
centration, and spatial B0 variations). In this work we propose an
algorithm termed Iterative Reduction of Interference Signal HSVD
(IRIS-HSVD), which utilizes interference signals to optimize prior
knowledge iteratively to separate baseline components and to esti-
mate parameters for in vivo 3D 31P MRS data that suffer from a low
SNR. In 3D MRS experiments, whole brain 31P MRS data may con-
tain spectra with varying chemical shifts caused by B0 inhomoge-
neity in different locations in addition to those due to
biophysiological variants. Thus, an adaptive, baseline tolerant,
and automatic algorithm is strongly desired. The IRIS-HSVD itera-
tively separates the signal subspace from noise and baseline sub-
spaces by the QR decomposition. During each iteration, the
interference signal (see below), which resulted from inaccurate
prior knowledge, is identified and utilized to optimize the param-
eter estimation. The resulting signal frequencies and damping fac-
tors corrected by the interference signal are then used as the ‘‘new”
prior knowledge for the next iteration. This procedure continues
until the interference signal is minimized. This algorithm utilizes
a constrained decision making mechanism and is fully automated
and relatively robust.

2. Materials and methods

2.1. FID signals modeling

The complex time domain free induction decay (FID) signal is
often modeled by the sum of exponentially damped sinusoids gi-
ven in Eq. (1).

yn ¼ �yn þ en ¼
PK
k¼1

ckzn
k þ en

zk ¼ eð�dkþifkÞ2pDt

ck ¼ akei/k

ð1Þ

where yn represents the original signal, �ynis the estimated signal, en

is a complex white Gaussian noise, and n is the index of data sam-
ples. The value K is the number of different frequencies and zk refers
to the kth signal pole with a frequency of fk and a damping factor of
dk (the reciprocal of the transverse relaxation time constant, T�2),
and Dt is the data sampling time interval [8,18]. The value ck is
the complex amplitude of zk, ak is the absolute magnitude, and uk

is the phase.
In this work, we develop an algorithm based on the state-space

approach to solve Eq. (1). Since details of the state-space method
can be found elsewhere [25], we are brief here. In short, by arranging
yn (n = 0, . . ., N � 1) in Eq. (1) into a special L by M Hankel matrix as
shown in Eq. (2), the parameters zk and ck can be estimated by com-
puting the SVD of H = URVH, where R is a diagonal matrix contain-
ing the singular values, U and V is an L by L and M by M unitary
matrix, respectively, and H denotes Hermitian conjugation [8,11].
H ¼

y0 y1 � � � yM�1

y1 y2 � � � yM
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. ..
. ..
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yL�1 yN�M � � � yN�1
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L P K; M P K; N ¼ LþM � 1

ð2Þ
2.2. Baseline distortion modeling

As mentioned above, broad line-width peaks and/or hardware
imperfection can cause baseline distortion. In this work, we as-
sume that the broad line-width signals causing baseline distortion
can be represented by an assortment of fast decaying exponentially
damped sinusoids and can be considered in the singular values of
the HSVD solution. This is reasonable since the fast decaying part
of FID is likely, in most in vivo 31P MRS, the signal from macromol-
ecule-bonded compounds such as cell membrane phospholipids.

2.3. Determine the number of poles

To compute the singular values is straightforward; however, it
is no trivial matter to determine the number of singular values,
k, to represent the estimated signal, �yn; which may include broad
line-width components. Several methods have been proposed to
determine the number of singular values, but the decision of the
number of singular values to be used can be difficult [9]. In ideal
cases, we should choose a maximum number of k to represent yn

with as little noise as possible. Some investigators have recom-
mended the use of the ratio of rm+1/(rm � rm+1) as a guideline
for choosing the value of k [25]. The values rm and rm+1 are the
smallest accepted and the largest rejected singular value of the
Hankel matrix in Eq. (2), respectively, where m (i.e., k) and
(m + 1) are the indices of the singular values. However, in this
study, we used the ratio of rm+1rm/(rm � rm+1)2 as the function
of singular value index (m) instead of rm+1/(rm� rm+1). Otherwise,
the decision making procedure is the same as the original method
proposed by de Groen [25]. This ratio provides a compatible tool
for determining the number of poles to be used and will be used
through this work.

2.4. Prior knowledge and adaptive optimization processes

As noted, the HSVD method does not necessarily return the
solutions (poles) with physiological and biochemical meaningful
frequencies and damping factors. What it yields in most cases is
a mathematically best ‘‘fit” to yn. This drawback is particularly
apparent in in vivo data when the SNR is significantly low. There-
fore, known information such as frequencies and damping factors
can be helpful for parameters optimization and fast converging
in data analysis. Perhaps the most challenging task in the develop-
ment of an algorithm for MRS quantitation is to have the ability of
self-correction for prior knowledge when needed. It is shown that
the phase change of a signal pole is strongly correlated with its fre-
quency deviation from the original value [17]. Therefore, one may
utilize phase alternation information to assist in correcting fre-
quency mismatch if needed in the optimization process. Indeed,
we found that the frequency difference of a pole from its ‘‘true” va-
lue can be approximated by the product of its phase change and its
damping factor, that is, Dfk ffi Dpk*dk0. We have demonstrated this
relationship in Fig. 1. To assess this relationship, a set of 31P MRS
data was simulated by varying the frequency of certain peaks (Pi,
a-, b-, and c-ATP) using parameters listed in Table 1. Briefly, two
baselines were added to the simulation data with SNR levels rang-
ing from 100 to 1100. (see Section 2.7 for details) Note that the fre-
quencies of Pi, a-, b-, and c-ATP peaks varied linearly between �1
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Fig. 1. The relationship between values of Dpk*dk0 and those of Dfk for peaks Pi and
ATPs (as indicated by symbols and lines). The value Dpk represents a phase
difference between the estimated phase value (pke) and original value (pk0) of the
resonances of interest after the signal was performed with the HTLS-PK. The value
dk0 represents the original damping factor of the signal pole. The value Dfk has a
unit of Hz and so does Dpk*dk0. Each symbol represents a result obtained with a set
of simulated data (synthesized using Table 1 parameters) using HTLS-PK. The value
of Dfk is also plotted to show the closeness of its value to those of Dpk*dk0.

Table 1
Parameters used for simulated spectra

Peak fk (ppm) Dk (Hz) ak (a.u.) uk (rad)

PME 6.87 ± 0.0 30 1135 0.0
Pi 4.72 ± 0.5 20 535 ± 10% 0.0
PDE 3.20 ± 0.0 30 1270 0.0
PCr 0.00 ± 0.5 12 1060 0.0
c-ATP �2.37 ± 0.0 22 1310 ± 10% 0.0
a-ATP �7.48 ± 0.5 22 1310 ± 10% 0.0
b-ATP �16.2 ± 0.5 29 1310 ± 10% 0.0
Base 1 0.05 ± 0. 0 270 3460 0.0
Base 2 4.23 ± 0.0 1140 1445 0.0
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and +1 ppm from their ‘‘true values”. Other resonance frequencies
were invariable since these peaks are usually insensitive to bio-
physiological environment. Applying HTLS-PK to the simulated
data, both estimated frequency (fke) and estimated phase (pke) val-
ues can be obtained for all resonances. In Fig. 1, the products of
phase changes and damping factors for the Pi, a-, b-, and c-ATP
peak were plotted as a function of frequency shift. Other peaks
Fig. 2. An example of the frequency phase mismatch threshold. The average absolute va
represented by an exponential line. Each symbol was an average result arising from 2
particular example, an empirical equation (y = 7.0x�0.86) is found and indicated by a so
mismatch threshold (Dpf0).
were not shown since their frequencies were unchanged. Here,
Dfk represents the difference between fke and the ‘‘true” frequency
(fk0) of the signal pole of interest. The value Dpk represents the dif-
ference between pke and the ‘‘true” value (pk0). The value dk0 repre-
sents the true damping factor value of the simulated signal, which
is assumed to be the same as the prior knowledge. It clearly dem-
onstrates that Dfk is strongly linearly correlated with Dpk*dk0

(shown in Fig. 1). The only exception is the deviation of Pi at fre-
quency shift near ±1 ppm. The reason for this deviation is unclear
at this time, but it is probably due to the influence of the nearby
PME and PDE peaks. At Dfk = 0, we also noted that the Dpk variance
(the standard deviation) increases as noise increases. An example
is shown in Fig. 2, where the average absolute value of Dpk for Pi
resonance is plotted as the function of SNR. This implies that the
accuracy of finding the ‘‘true” poles depends on the signal’s SNR.
This relationship also allows us to determine the origin of Dpk

(i.e., whether it is caused by Dfk or signal noise). Thus, the relation-
ship between Dpk and SNR, which is determined by an empirical
fitting, can be utilized as a convergence criterion in the optimiza-
tion process (more below). In other words, if the SNR of a signal
is known the convergent Dpk value used for automatic processing
is determined by the empirical equation obtained from Fig. 2. We
defined this convergence criterion as the frequency phase mis-
match threshold (Dpf0) for a given SNR.

2.5. Fine tuning by the identification of interference signals

Imperfect frequency estimation (i.e., when fke – fk0) not only
caused the phase to be mismatched as described above but also re-
sulted in non-noise type residual signals. In general, the non-noise
residual spectrum D(f) can be expressed in the following form:

Dðf Þ ¼ SðfkeÞ � Sðfk0Þ ¼
ake

dþ iðf � fkeÞ
� ak0

dþ iðf � fk0Þ
ð3Þ

where S(fk0) and S(fke) are the spectra of the ‘‘true” and estimated
signals with frequencies of fk0 and fke, respectively; and ak0 and
ake are their amplitudes and d is the common damping factor for
both signals. The real part of this equation is a differentiated
Lorentzian function [27]. Here, we assume that the damping factor
does not contribute significantly in the D(f), which is found to be
true in most cases.

Fig. 3 illustrates this concept using the D(f) of the a-ATP peak as
an example. The spectra from top to bottom of each panel repre-
sent S(fk 0), S(fke), and D(f), respectively. These estimated results,
S(fke), were obtained using the non-iterative HTLS-PK method, thus
the results heavily depend on prior knowledge. Fig. 3a, where
fke = fk0, shows a typical white Gaussian noise type of residual sig-
lue of Dpk for Pi resonance at Dfk = 0 is plotted as the function of SNR, which can be
00 Monte Carlo simulation studies with a given condition using HTLS-PK. For this
lid line. Here, x represents the SNR value of the signal and y the frequency phase
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Fig. 3. Demonstrations of Interference signal using HTLS-PK with simulated data. (a) A condition that all of the estimated frequencies match the true values and the residual
signals are primarily white Gaussian noise. On the contrary, (b) shows conditions where the estimated frequency of the a-ATP peak is 0.23 ppm smaller than the true values.
Consequently, non-white-noise signals are revealed in these residual signals, which are termed the interference signals (see text for details). Each figure exhibits, from top to
bottom, the original, the estimated and the residual signals, respectively.

26 X. Wang, J.-H. Lee / Journal of Magnetic Resonance 196 (2009) 23–32
nal, while Fig. 3b, where fke – fk0, exhibits both noise and non-noise
type residual signals. The prior knowledge of a-ATP frequency was
intentionally shifted to 0.23 ppm up-field (Fig. 3b). The result (data
not shown) with 0.23 ppm down-field shifting was similar to
Fig. 3b. We termed the non-noise residual signals ‘‘interference sig-
nals”, whose ‘‘interference poles” can be identified from the resid-
ual signal by the HSVD method. It was observed that a larger Dfk

can result in an identifiable interference pole and phase change
(Dpk > 3Dpf0) while a smaller Dfk can only introduce a visible phase
change (Dpf0 < Dpk < 3Dpf0). Therefore, the interference poles can
fine tune prior knowledge in the adaptive optimization process.
Specifically, the interference signals can be added or ‘‘compen-
sated” into the estimated signals where the non-noise residual sig-
nals were found. After quantifying the ‘‘compensated” estimated
signals with HSVD, the resulting poles are then assigned to ‘‘new”
prior knowledge poles for the next iteration. The fine tuning pro-
cess will be repeated until no interference signals (i.e., when
Dpk < 3Dpf0) can be identified. We also did similar simulation stud-
ies for the effects of damping factors and found that even if the
prior knowledge damping factor dke varied by a range of ±20% of
dk0 values, no non-noise residual signals were observable. This sug-
gests that non-noise residual signals may not be able to assist in
the fine tuning of the damping factors.

2.6. Summary of IRIS-HSVD

The IRIS-HSVD algorithm is summarized in the following five
steps.

1. Acquiring prior knowledge: All prior knowledge should be
determined and initiated at the beginning. Details for setting
up prior knowledge for simulation and in vivo data are given
in Sections 2.7 and 2.9, respectively.

2. Acquiring p estimated poles, ze: Supposing there are p reso-
nances of interest (p is the prior knowledge and decided by
the investigators), the number of total signal poles k (k > p)
are determined by the HSVD method described in Section 2.3.
Then use the HTLS-PK according to the approach reported by
Chen et al. [17] to separate the signal of interest from the back-
ground noise and baseline signal. Specifically, based on the
prior knowledge, the QR decomposition is used to estimate
the poles of interest (ze). Then, the residual signal (containing
noise and non-noise residuals) is separated by removing ze from
the original signal. The result is composed of two parts: the esti-
mated compounds’ signal of interest (ye) with a complex ampli-
tude (ce) and the residual signal (yr).

3. Identification and quantification of interference signals: The
phase of ce(pke) is compared to the known (original or prior
knowledge) phase (pk0) to determine the difference (Dpk), which
is compared to Dpf0 (described in Section 2.4) along with the SNR.
Interference signal poles are identified at the peaks with ‘‘large”
phase changes (i.e., Dpk > 3Dpf0) by the HSVD method. The inter-
ference signal is reconstructed from these poles.

4. Prior knowledge poles correction: The interference signal is
added to the estimated compounds’ signal of interest (ye) to
approximate the true compounds’ signal. Then, the HSVD is
used to estimate the ”true” compounds’ poles, which is set to
be the new prior knowledge for the next iteration if it does
not meet the convergence criterion (see Step 4). For poles with
a ‘‘small” phase change (i.e., Dpf0 < Dpk < 3Dpf0), the relation-
ship of Dfk ffi Dpk*dk0 is used to estimate the true frequency.
The new prior knowledge poles are composed accordingly with
the same damping factors. Since Dpf0 for in vivo situation is dif-
ficult to obtain, the simulated results from Fig. 2 were applied to
all data in this work.

5. Iterative optimization of interference signal: Repeat steps 2–4
with updated prior knowledge poles until the interference sig-
nal becomes negligible (i.e., Dpk < Dpf0).In our case, a maximum
of 6 iterations was set to prevent oscillation and it seems to
work reasonably well for our case and only about less than
20% of in vivo data reach the maximum number of iterations
due to low SNR. The convergence time for a typical 2.4 GHz dual
processor PC is about 3 to 6 s depending on SNR.

2.7. Simulation data

All simulation data for 31P MRS was synthesized using Eq. (1)
and parameters listed in Table 1. These parameters were obtained
from data published in the literature [26] and our own work. Two
broad line-width peaks were added to the simulated 31P spectra,
which were determined by our observation of human brain 31P
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data at 4T. Presumably, these broad component signals originated
from immobile membrane phospholipids metabolites [28] and/or
hardware imperfections. The two broad peaks were located at
0.05 and 4.23 ppm (reference to PCr) with a line-width of about
270 and 1140 Hz, respectively. These synthesized data were used
for all Monte Carlo studies. To mimic in vivo data signals, white
Gaussian noises with various standard deviations were added.
We defined the SNR ratio in the following equation:

SNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
k¼1a2

k

q
r

ð4Þ

where r; is the standard deviation of the noise. For both simulated
and measured in vivo data, the last 20% of the data points in each
FID were defined as noise. A medium range of noise standard devi-
ation for simulated data was chosen to approximate the SNR ratio of
the in vivo data after commonly used digital filtering (e.g., exponen-
tial and Gaussian filters) was applied to the data [29]. This common
practice of applying digital filtering improves the SNR; hence, the
choice of a medium SNR range seems to be more useful than that
in the extreme cases with heavy noise levels.

Considering in vivo biochemical conditions, the chemical fre-
quency values of Pi, a-ATP, b-ATP, and c-ATP of the simulation data
are allowed a variance of ±0.5 ppm. Their amplitudes and damping
factors also allowed a total of 10% change from their original val-
ues. The levels of baseline distortion and noise were comparable
or even higher than the human in vivo data obtained from our lab-
oratory. These data were used to test the performance of IRIS-
HSVD and compared to the results with those using HTLS-PK and
HSVD algorithms. Note that the prior knowledge is the data from
the ‘‘true values” of the Table 1 and is used for all algorithms.

2.8. Performance evaluation for simulation data

The performance of three methods was evaluated by the rela-
tive root mean squared error (RRMSE), defined in Eq. (5), for all
chemical compounds.

RRMSEk ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
!

X!

t¼1

ðfk � f̂t
kÞ

2

f2
k

s
ð5Þ

where c is the number of Monte Carlo trials for each given param-
eter set. We chose 200 in our test. The value fk denotes one of the kth

targeted compound parameters (i.e., x, d, c, or u) as described in Eq.
(1), and f̂t

k is the estimated value from one of the above algorithms
obtained in the vth trial.

The Cramer–Rao lower bounds (CRB), the lowest possible error
in an ideal estimation, were also included to demonstrate the per-
formance of the proposed method [30,31]. The CRBs for frequency,
damping factor, amplitude and phase are expressed as follows:

CRBf ¼ CRBd ¼ 2
ffiffiffi
2
p
ð�dÞ3=2

ffiffiffiffiffiffi
Dt
p r

c
ð6Þ

CRBc ¼ cCRB/ ¼ 2ð�dÞ1=2
ffiffiffiffiffiffi
Dt
p

r ð7Þ

The symbols f, d, c, u, r, and Dt were defined previously. Note
that the CRB values estimated here assumed that all peaks are
independent (i.e., single peaks); therefore, the values are at best
a first approximation for conditions with multiple peaks. Conse-
quently, the calculated CRB values are too small to represent a
multiple peaks’ condition due to correlation effects in our cases,
which are evident from our results shown in Fig. 4 (see below).

2.9. In vivo brain MRS data quantification

All in vivo MRS data were collected at the Center for Imaging Re-
search at the University of Cincinnati using a 4.0 T Varian Unity
INOVA whole body MRI/MRS system (Varian Inc., Palo Alto, CA).
3D 31P MRS data were acquired with a 1H/31P double-tuned TEM
coil using a 3D one-pulse sequence. A 3D phase encoding scheme
was used with acquisition weighting according to a Gaussian func-
tion to minimize side lobe ripple while retaining optimal signal-to-
noise [32]. The 31P MRS data were acquired with a 3 s TR, 928
phase encoding steps, 90� flip angle and 1 average. The B1 excita-
tion bandwidth covers about 5 KHz, which was experimentally
verified. Total acquisition time was about 45 min. Single voxel
MRS data were obtained by using an image guided single voxel
reconstruction method in the specified region of interests based
on a 3D MDEFT image [33] acquired from the same subject. The
advantage of using a one-pulse sequence for data acquisition is
to get a better SNR since the signal is detected with a very short de-
lay time. However, the disadvantage lies in the baseline distortion
caused by the inclusion of signals from immobile membrane phos-
pholipids metabolites. All data were applied with a 15 Hz exponen-
tial apodization before further processing.

First, prior knowledge (i.e., fke and dke) of the 31P resonances of
interest was obtained from the average spectrum of the entire
3D MRS data set, which is equivalent to the signal from the center
of k-space. Using HSVD, it was relatively easy to estimate the
chemical frequencies and damping factors of the metabolites of
interest because of its good SNR. However, the dke values might
be larger compared to those in the local MRS due to B0 inhomoge-
neity since the signal was averaged from the entire volume. These
slightly larger damping factors do not affect the performance of the
IRIS-HSVD, since it is insensitive to moderately imperfect damping
factors. After acquiring prior knowledge, data were preprocessed
with an exponential filter before performing the IRIS-HSVD algo-
rithm as described previously.

The PCr peak was easily identified and quantified by the HSVD
because of its relatively stable chemical shift. After that, the esti-
mated PCr resonance frequency and phase were used as reference
values to correct for frequency shifts and the zero order phases of
other resonances. The ratio of the estimated PCr damping factor to
the prior knowledge value was used to modify dke for other chem-
ical compounds of interest to adjust for local damping factor
change caused by B0 variation.

The same prior knowledge and same data sets with their two
initial data points removed were also processed with AMARES for
comparison. All AMARES quantifications were performed using
the jMRUI package without modification with the begin time fixed
and the zero order phase variable. Note that we also tried various
parameter settings and found the above mentioned setting yield-
ing the most valid result.

3. Results and discussion

3.1. Quantitation of simulated NMR signals

Fig. 4 showed CRBs of frequency and amplitude for Pi, c-ATP
and a-ATP peaks, and their corresponding RRMSEs resulting from
the HSVD, HTLS-PK, and IRIS-HSVD methods. The CRB and RRMSEs
are plotted as a function of the noise standard deviation. Fig. 4a, c,
and e depicts the accuracy of frequency estimation in different
noise levels for Pi, c-ATP and a-ATP peaks using three different
methods, while Fig. 4.2b, d, and f illustrates the accuracy of the
amplitude estimation. In general, the frequency estimations have
smaller RRMSE values and are more reliable than that of ampli-
tude. HSVD performs better in the frequency estimations than in
the amplitude estimations as compared to HTLS-PK in the noise le-
vel tested. In this study, the prior knowledge frequency was fixed
but the estimated frequencies varied in Monte Carlo simulations.
Thus, there is no surprise that HTLS-PK performed poorly as com-
pared to HSVD since HTLS-PK, but not HSVD, relies heavily on the
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Fig. 4. Performance evaluation for IRIS-HSVD, HTLS-PK, and HSVD using Monte Carlo studies. Symbols represent the simulation result in given conditions (see text for
details), while lines are only to guide eyes. Peaks Pi (a and b), c-ATP (c and d), and a-ATP (e and f) are given for demonstration. The values estimated for CRB and RRMSE of
frequency (a, c, and e) and amplitude (b, d, and f) are shown for all three methods.
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accuracy of the prior knowledge. Note that the frequency RRMSE
values resulting from the HTLS-PK were independent of noise lev-
els since the prior knowledge frequency value is identical to the
mean value of the estimated frequencies (i.e., nk ¼ 1

c Rc
m¼1n

m
k) in
Monte Carlo simulations. If one considers 10% RRMSE as the high-
est limit for achieving a reliable quantification result, all three
tested methods performed relatively well for the frequency esti-
mation but only IRIS-HSVD performed satisfactorily for both fre-



Table 2
The prior knowledge values and estimated results using IRIS-HSVD for a typical
in vivo spectrum shown in Fig. 5

Peak Prior knowledge Final estimated results

Frequency
(ppm)

Damping
factor (Hz)

Frequency
(ppm)

Damping
factor (Hz)

PME 6.87 32 6.87 35
Pi 4.86 18 4.75 20
PDE 2.78 38 2.78 41
PCr 0.00 12 0.00 13
c-ATP �2.53 20 �2.53 22
a-ATP �7.55 20 �7.55 22
b-ATP �16.4 25 �16.4 27
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quency and amplitude. Furthermore, IRIS-HSVD outperformed the
other two methods in all aspects.

In general, the results show RRMSE and CRB values increase as
noise increases. This is reasonable since adding noise increases the
uncertainty of the Monte Carlo experiments resulting in an in-
creased RRMSE. However, it was surprising that the performance
of IRIS-HSVD seemed poor for the frequency estimation in very
low noise ranges. It is possible that the better SNR signals resulted
in oversensitivity in the identification and quantification of inter-
ference signals (see Section 2.6), which jeopardized the accuracy
of performance. Nevertheless, this drawback does not significantly
impede its ability to find the right frequency, and particularly the
amplitude.

3.2. Quantification of in vivo 31P MRS signal

Fig. 5 shows the result of a typical in vivo 31P MRS spectrum. The
top panel shows the residual signal and the second panel shows
the estimated peaks of the seven 31P compounds of interest indi-
vidually. The third panel illustrates the estimated spectrum over-
laid with the original signal, demonstrating the estimation
accuracy. The bottom panel shows the original spectrum together
with the estimated baseline, which demonstrates IRIS-HSVD suc-
cessfully separating the distorted baseline from the signal of inter-
est. The estimated results are shown in Table 2 along with the prior
knowledge values used for the IRIS-HSVD algorithm. The table
shows chemical shift frequencies and damping factors for all reso-
nance peaks. The result showed that all prior knowledge frequen-
cies, except for the Pi peak, are identical to the final estimated
frequencies resulting from IRIS-HSVD. In addition, all prior knowl-
edge damping factors agreed very well with the final estimations.
This suggests that the spectrum from the k-space center of the
3D data, which is equivalent to an average spectrum of the entire
volume of interest, is an excellent prior knowledge for MRS data
processing. The observation of a 0.11 ppm chemical shift for the
Pi peak most likely reflects a variation of local pH level and/or
Mg2+ concentration of brain tissues.
-5051015
Chemical Shi

Fig. 5. A typical result of in vivo (raw) data analyzed by IRIS-HSVD. It shows from the
chemical compounds of interest, the original spectrum overlaid with the estimated spec
The AMARES method in the jMRUI package [34,35], a currently
available 31P MRS data processing software, was chosen for com-
parison to the performance of IRIS-HSVD. AMARES could quantify
the raw signal used in Fig. 5 if the baseline signal prior knowledge
is available, but such information can be difficult to acquire. There-
fore, the first 2 points of the original signal were removed to min-
imize baseline distortion and the phase was adjusted
correspondingly before data were submitted to IRIS-HSVD and
AMARES for quantification. Figs. 6 and 7 show the quantified spec-
trum obtained from IRIS-HSVD and AMARES methods, respec-
tively. Note that Fig. 7 was the output directly from the jMRUI
package without further modification. The panels, from the top
to the bottom, exhibit the residual signals, individual resonance
components, the estimated spectrum, and the original spectrum,
respectively. Both methods successfully identified all targeted res-
onances. Unlike AMARES, IRIS-HSVD not only classifies the chemi-
cal compounds of interest but also the distorted baseline. This is
not surprising since AMARES precludes a distorted baseline. There-
fore, the result from the IRIS-HSVD may provide a better estimated
spectrum than AMARES. This can also be illustrated by the fact that
the residual signal standard deviation (SD) is about 40% more in
Fig. 6 (SD = 3247 a.u.) as compared to Fig. 7 (SD = 4784 a.u.). Fur-
thermore, the residual signal in Fig. 6 resulting from IRIS-HSVD
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top to the bottom the residual signal, the individual estimated spectrum for major
trum, and the original spectrum along with an estimated baseline.
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Fig. 6. A typical example of truncated in vivo data analyzed by IRIS-HSVD. This figure demonstrates the quantification of the same spectrum shown in Fig. 5 but with the first
2 time domain points removed. The figure shows, from the top to the bottom, the residual signal, the individual estimated spectrum, the estimated spectrum, and the original
spectrum along with an overlaid estimated baseline.
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contains mainly white Gaussian noise, while that in Fig. 7 includes
some features in addition to the white Gaussian noise signal. We
showed the numerical results from both methods in Table 3. Be-
cause of the influence of the distorted baseline, the estimated
amplitudes between these two methods may not be comparable.
In general, the resulting frequencies were quite similar between
these two methods, while estimated damping factors were larger
in those obtained by IRIS-HSVD. Due to the significant difference
in damping factors, the amplitudes estimated by these two meth-
ods, the most important components in MRS data analysis, were
quite different. While there are no grounds to verify which method
is more accurate in amplitude estimation, one would probably
agree that IRIS-HSVD may perform better if judged by some bio-
physiological guidelines. For example, the estimated amplitudes
of a-, b-, and c-ATP were quite similar for the IRIS-HSVD method,
but they varied significantly when using the AMARES approach.
One would expect that these amplitudes to be identical if B1 is
strong enough, since each signal represents one phosphorus nu-
cleus from the same compounds but with a different chemical
environment.

In order to compare the performance of these two methods, we
sampled about 40 spectra from different locations in the brain
from one subject. After 15 Hz exponential filtering, untruncated
data were quantified by IRIS-HSVD with the prior knowledge as de-
scribed previously. For AMARES quantification, data were trun-
cated for the first 2 time domain data points before data analysis
using the same prior knowledge. A semiautomatic HSVD method,
which involved operator interaction, was used to determine the
‘‘true values” of all frequencies and damping factors for our perfor-
mance comparison. However, the comparison for amplitude and
phase between these two methods may not be practical because
of a different data size used between the IRIS-HSVD and AMARES
methods. Therefore, only frequencies and damping factors result-
ing from these two methods were compared to the ‘‘true” values,
which were presented in Table 4 for seven major 31P resonances
in the brain. Again, the results from both methods are generally
quite compatible and there is no significant difference between
them. However, one should note that IRIS-HSVD analyzes the
raw data and AMARES processes the truncated data. It is noted that
similar results were observed when truncated data were processed
by IRIS-HSVD (data not shown). It should also be noted that both
AMARES and IRIS-HSVD performed relatively well in resonances
that have a relatively high SNR (e.g., ATPs and PCr). Nevertheless,
IRIS-HSVD showed a slightly smaller mean and standard deviation
in frequency for PDE and Pi peaks as compared to AMARES. Gener-
ally, IRIS-HSVD demonstrates better performance in the damping
factor estimation, which may result in a more stable presentation
in amplitude estimation as compared to AMARES. A better perfor-
mance for IRIS-HSVD may be attributed to its ability to compensate
for the distorted baseline problem in Pi-PDE region, which results
in a more robust estimation.

4. Conclusion

We have demonstrated with simulated and in vivo data that the
performance of IRIS-HSVD is superior to the performance of HTLS-
PK and HSVD. The major advantage of IRIS-HSVD is its ability to
process any raw data, particularly for those suffering from baseline
distortion. This ability not only increases data quantification con-
sistency but also theoretically improves estimation accuracy. Fur-
thermore, no interactive phase correction or data preprocessing,
other than an exponential filter, are required. These features make
IRIS-HSVD a viable candidate for large volume MRS data processing
and a truly automatic algorithm.



Fig. 7. A typical example of truncated in vivo data analyzed by AMARES. This figure demonstrates the quantification of the same data shown in Fig. 6. A zero order and a first
order phase correction were performed using tools in jMRUI before analysis by AMARES. The prior knowledge used in Figs. 5–7 were identical. The graphic output was
adapted from jMRUI software package without modification. The figure shows from the top to the bottom the residual signal, the individual estimated spectrum, the
estimated spectrum, and the original spectrum.

Table 3
Comparison quantification results for a typical in vivo spectrum between IRIS-HSVD
(Fig. 6) and AMARES (Fig. 7)

Peak IRIS-HSVD AMARES

fk (PPM) dk (Hz) ak (a.u.) /k (rad) fk (PPM) dk (Hz) ak (a.u.) /k (rad)

PME 6.87 40 796 0.32 6.80 11 189 2.9
Pi 4.85 22 684 0.20 4.96 10 327 2.9
PDE 2.78 47 2101 �0.10 3.07 12 373 2.9
PCr 0.00 15 1307 �0.03 0.00 6.4 401 2.9
c-ATP �2.53 25 1461 0.11 �2.46 7.0 341 2.9
a-ATP �7.55 25 1557 0.39 �7.58 11 650 2.9
b-ATP �16.5 31 1395 �0.09 �16.4 17 740 2.9

Table 4
Differences (mean ± standard deviation) in frequency and damping factor between
the ‘‘true” value and the estimation values obtained by IRIS-HSVD and AMARES

Peak IRIS-HSVD AMARES

fk (Hz) dk (Hz) fk (Hz) dk (Hz)

PME 14 ± 11 9.6 ± 9.2 14 ± 13 12 ± 6.6
Pi 18 ± 23 6.0 ± 5.3 21 ± 37 15 ± 10
PDE 24 ± 18 12 ± 11 51 ± 81 34 ± 44
PCr 2.1 ± 4.1 1.3 ± 1.6 8.0 ± 14 5.9 ± 2.7
c-ATP 7.0 ± 6.4 6.4 ± 5.5 9.0 ± 6.7 14 ± 5.6
a-ATP 8.1 ± 9.0 5.8 ± 4.9 4.7 ± 4.5 8.8 ± 5.6
b-ATP 15 ± 15 6.6 ± 5.0 10 ± 10 14 ± 6.4
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IRIS-HSVD, similar to HSVD, assumes that the signal to be pro-
cessed comprises a pure Lorentzian lineshape. This may raise a
concern for in vivo MRS data since some researchers suggested that
such data is best represented by a Gauss or Voigt model [36]. How-
ever, our results show that IRIS-HSVD performs well with both
simulation and in vivo data. These results, which seem to agree
with others that used HSVD based methods [4–6], suggest that
IRIS-HSVD may not be sensitive to lineshape models or that the
in vivo MRS signals are quite close to a Lorentzian lineshape. Fur-
thermore, the fact that IRIS-HSVD treats all peaks as singular
may be too simplistic. For example, the resonance for c-ATP and
a-ATP should be doublet and b-ATP triplet. However, since 31P res-
onances at 4 T usually appear as singlet, this simplified model may
be sufficient which is supported by our results.

Like other algorithm, IRIS-HSVD has its weaknesses. The current
version of IRIS-HSVD requires restricting the iteration number to
avoid unwanted oscillation. Also, poor performance of simulated
results in Fig. 4 at the low noise region is unexpected, which
may be attributed to imperfect convergence criteria chosen in
the process. These could include criteria for the determination of
the pole number and/or the frequency phase mismatch threshold.
Besides, fine tuning for the damping factors was neglected, which
may affect the accuracy of amplitude estimation. Optimizing those
criteria and considering a complete model (i.e., using multiplets in-
stead of singlet) may further improve the performance of IRIS-
HSVD and is worthwhile further exploration. In addition, since this
method is verified only for 31P signals at 4 T, it needs further test-
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ing to determine if this algorithm will also work for other types of
signals (1H, 13C, etc.) or signals from different field strengths in the
future.

Perhaps the novel contribution of IRIS-HSVD, as compared to
other similar algorithms, is the use of a constrained recursive ap-
proach, which continues to modify the prior knowledge so that a
‘‘targeted” value may be reached after a few iterations. Therefore,
careful selection of the prior knowledge is important as this will
determine the convergence speed for the process. From our study,
the spectrum from the k-space center proved to be an excellent ini-
tial starting value for 3D spectroscopic data.
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